Workshop Solutions to Sections 2.1 and $2.2^{(1.1 \& 1.2)}$

1) Find the domain of the function $f(x) = 9 - x^2$.	2) Find the range of the function $f(x) = 9 - x^2$.
Solution:	Solution:
Since $f(x)$ is a polynomial, then	$R_f = (-\infty, 9]$
$D_f = \mathbb{R} = (-\infty, \infty)$	
Note: The domain of any polynomial is $\mathbb R$.	
3) Find the domain of the function $f(x) = 6 - 2x$.	4) Find the range of the function $f(x) = 6 - 2x$.
Solution:	Solution:
Since $f(x)$ is a polynomial, then	Since $f(x)$ is a polynomial of degree one (<i>i. e.</i> is of an odd
$D_f = \mathbb{R} = (-\infty, \infty)$	degree), then
, , , , , , , , , ,	$R_f = \mathbb{R} = (-\infty, \infty)$
5) Find the domain of the function $f(x) = x^2 - 2x - 3$.	6) Find the domain of the function $f(x) = 1 + 2x^3 - x^5$.
Solution:	Solution:
Since $f(x)$ is a polynomial, then	Since $f(x)$ is a polynomial, then
$D_f = \mathbb{R} = (-\infty, \infty)$ 7) Find the domain of the function $f(x) = 5$.	$D_f = \mathbb{R} = (-\infty, \infty)$ 8) Find the range of the function $f(x) = 5$.
Solution:	Solution:
Since $f(x)$ is a polynomial, then	$R_f = \{5\}$
$D_f = \mathbb{R} = (-\infty, \infty)$ 9) Find the domain of the function $f(x) = x - 1 $.	10) Find the domain of the function $f(x) = x + 5 $.
Solution:	Solution:
Since $f(x)$ is an absolute value of a polynomial, then	Since $f(x)$ is an absolute value of a polynomial, then
$D_f = \mathbb{R} = (-\infty, \infty)$	$D_f = \mathbb{R} = (-\infty, \infty)$
	2) (,)
Note: The domain of an absolute value of any polynomial	
Note: The domain of an absolute value of any polynomial is \mathbb{R} .	
	12) Find the range of the function $f(x) = x $
11) Find the domain of the function $f(x) = x $.	12) Find the range of the function $f(x) = x $.
Solution: Since $f(x)$ is an absolute value of a polynomial, then	Solution: $P = [0, \infty)$
Since $f(x)$ is an absolute value of a polynomial, then	$R_f = [0, \infty)$
$D_f = \mathbb{R} = (-\infty, \infty)$	
	Note: The range of an absolute value of any polynomial
	is always $[0,\infty)$.
13) Find the domain of the function $f(x) = 3x - 6 $.	14) Find the domain of the function $f(x) = 9 - 3x $.
Solution:	Solution:
Since $f(x)$ is an absolute value of a polynomial, then	Since $f(x)$ is an absolute value of a polynomial, then
$D_f = \mathbb{R} = (-\infty, \infty)$	$D_f = \mathbb{R} = (-\infty, \infty)$
$D_f = \mathbb{R} = (-\infty, \infty)$ 15) Find the domain of the function	
15) Find the domain of the function	$D_f = \mathbb{R} = (-\infty, \infty)$ 16) Find the domain of the function
,	$D_f = \mathbb{R} = (-\infty, \infty)$
15) Find the domain of the function $f(x) = \frac{x+2}{x-3}$ <u>Solution:</u>	$D_f = \mathbb{R} = (-\infty, \infty)$ 16) Find the domain of the function $f(x) = \frac{x-2}{x+3}$ Solution:
15) Find the domain of the function $f(x) = \frac{x+2}{x-3}$ <u>Solution:</u> $f(x)$ is defined when $x - 3 \neq 0 \implies x \neq 3$. So,	$D_{f} = \mathbb{R} = (-\infty, \infty)$ 16) Find the domain of the function $f(x) = \frac{x-2}{x+3}$ Solution: $f(x) \text{ is defined when } x + 3 \neq 0 \implies x \neq -3. \text{ So,}$
15) Find the domain of the function $f(x) = \frac{x+2}{x-3}$ <u>Solution:</u>	$D_f = \mathbb{R} = (-\infty, \infty)$ 16) Find the domain of the function $f(x) = \frac{x-2}{x+3}$ Solution:
15) Find the domain of the function $f(x) = \frac{x+2}{x-3}$ <u>Solution:</u> $f(x)$ is defined when $x - 3 \neq 0 \implies x \neq 3$. So,	$D_{f} = \mathbb{R} = (-\infty, \infty)$ 16) Find the domain of the function $f(x) = \frac{x-2}{x+3}$ Solution: $f(x) \text{ is defined when } x + 3 \neq 0 \implies x \neq -3. \text{ So,}$
15) Find the domain of the function $f(x) = \frac{x+2}{x-3}$ <u>Solution:</u> $f(x)$ is defined when $x - 3 \neq 0 \implies x \neq 3$. So,	$D_{f} = \mathbb{R} = (-\infty, \infty)$ 16) Find the domain of the function $f(x) = \frac{x-2}{x+3}$ Solution: $f(x) \text{ is defined when } x + 3 \neq 0 \implies x \neq -3. \text{ So,}$
15) Find the domain of the function $f(x) = \frac{x+2}{x-3}$ <u>Solution:</u> $f(x)$ is defined when $x - 3 \neq 0 \implies x \neq 3$. So,	$D_{f} = \mathbb{R} = (-\infty, \infty)$ 16) Find the domain of the function $f(x) = \frac{x-2}{x+3}$ Solution: $f(x) \text{ is defined when } x + 3 \neq 0 \implies x \neq -3. \text{ So,}$
15) Find the domain of the function $f(x) = \frac{x+2}{x-3}$ <u>Solution:</u> $f(x)$ is defined when $x - 3 \neq 0 \implies x \neq 3$. So,	$D_{f} = \mathbb{R} = (-\infty, \infty)$ 16) Find the domain of the function $f(x) = \frac{x-2}{x+3}$ Solution: $f(x) \text{ is defined when } x + 3 \neq 0 \implies x \neq -3. \text{ So,}$

17) Find the domain of the function	18) Find the domain of the function
$f(x) = \frac{x+2}{x^2-9}$	$f(x) = \frac{x+2}{x^2-5x+6}$
Solution: $x^2 - 9$	Solution: $x^2 - 5x + 6$
$f(x)$ is defined when $x^2 - 9 \neq 0 \implies x^2 \neq 9 \implies x \neq \pm 3$.	$f(x)$ is defined when $x^2 - 5x + 6 \neq 0$
So,	$\Rightarrow (x-2)(x-3) \neq 0 \Rightarrow x \neq 2 \text{ or } x \neq 3. \text{ So,}$
$D_f = \mathbb{R} \setminus \{-3,3\} = (-\infty, -3) \cup (-3,3) \cup (3,\infty)$	
19) Find the domain of the function	$D_f = \mathbb{R} \setminus \{2,3\} = (-\infty, 2) \cup (2,3) \cup (3,\infty)$ 20) Find the domain of the function
,	
$f(x) = \frac{x+2}{x^2 - x - 6}$	$f(x) = \frac{x+2}{x^2+9}$
Solution:	Solution:
$f(x)$ is defined when $x^2 - x - 6 \neq 0$	$f(x)$ is defined when $x^2 + 9 \neq 0$ but for any value x the
$\Rightarrow (x+2)(x-3) \neq 0 \Rightarrow x \neq -2 \text{ or } x \neq 3. \text{ So,}$	denominator $x^2 + 9$ cannot be 0. So,
$D_f = \mathbb{R} \setminus \{-2,3\} = (-\infty, -2) \cup (-2,3) \cup (3,\infty)$	$D_f = \mathbb{R} = (-\infty, \infty)$
21) Find the domain of the function	22) Find the domain of the function
$f(x) = \sqrt[3]{x-3}$	$f(x) = \sqrt{x-3}$
Solution:	Solution:
$D_f = \mathbb{R} = (-\infty, \infty)$	$f(x)$ is defined when $x - 3 \ge 0 \implies x \ge 3$ because $f(x)$ is an even root. So,
Note: The domain of an odd root of any polynomial	$D_f = [3, \infty)$
is \mathbb{R} .	
23) Find the domain of the function	24) Find the domain of the function
$f(x) = \sqrt{3 - x}$	$f(x) = \sqrt{x+3}$
Solution:	Solution:
$f(x)$ is defined when $3 - x \ge 0 \implies -x \ge -3 \implies x \le 3$	$f(x)$ is defined when $x + 3 \ge 0 \implies x \ge -3$ because
because $f(x)$ is an even root. So, $D_f = (-\infty, 3]$	f(x) is an even root. So, $D_x = \begin{bmatrix} -3 & \infty \end{bmatrix}$
25) Find the domain of the function	$D_f = [-3, \infty)$ 26) Find the range of the function
$f(x) = \sqrt{-x}$	$f(x) = \sqrt{-x}$
Solution:	Solution:
$f(x)$ is defined when $-x \ge 0 \implies x \le 0$ because $f(x)$ is	$R_f = [0, \infty)$
an even root. So,	
$D_f = (-\infty, 0]$	Note: The range of an even root is always ≥ 0 .
27) Find the domain of the function	28) Find the domain of the function
$f(x) = \sqrt{9 - x^2}$	$f(x) = \frac{x+2}{\sqrt{x-3}}$
Solution: $f(x) = 1$ fixed that $0 = x^2 > 0$ and $x^2 > 0$	$\sqrt{x-3}$ Solution:
$f(x) \text{ is defined when } 9 - x^2 \ge 0 \implies -x^2 \ge -9 \implies$ $x^2 \le 9 \implies \sqrt{x^2} \le \sqrt{9} \implies x \le 3 \implies -3 \le x \le 3.$	$f(x)$ is defined when $x - 3 > 0 \implies x > 3$. So,
$x^2 \leq 9 \implies \sqrt{x^2} \leq \sqrt{9} \implies x \leq 3 \implies -3 \leq x \leq 3$. So,	$D_f = (3, \infty)$
$D_f = [-3,3]$,
29) Find the domain of the function	30) Find the domain of the function
$f(x) = \frac{x+2}{\sqrt{9-x^2}}$	$f(x) = \sqrt{x^2 - 9}$
V 5 X	Solution:
Solution: $f(x)$ is defined when $9 - x^2 > 0 \implies -x^2 > -9$	$f(x)$ is defined when $x^2 - 9 \ge 0 \implies x^2 \ge 9$
$ f(x) \text{ is defined when } 9 - x^2 > 0 \implies -x^2 > -9 \\ \implies x^2 < 9 \implies \sqrt{x^2} < \sqrt{9} \implies x < 3 \implies -3 < x < 3 . $	$\Rightarrow \sqrt{x^2} \ge \sqrt{9} \Rightarrow x \ge 3 \Rightarrow x \ge 3 \text{ or } x \le -3.$
$ \Rightarrow x^{-} < 9 \Rightarrow \sqrt{x^{-}} < \sqrt{9} \Rightarrow x < 3 \Rightarrow -3 < x < 3 . $ So,	So, $D_{1} = (-\infty - 3] \cup [3, \infty)$
$D_f = (-3,3)$	$D_f = (-\infty, -3] \cup [3, \infty)$
, , , , , , , , , , , , , , , , , , ,	·

31) Find the range of the function	32) Find the domain of the function
$f(x) = \sqrt{x^2 - 9}$	$f(x) = \frac{x+2}{\sqrt{x^2-9}}$
Solution:	
$R_f = [0, \infty)$	Solution: $f(x)$ is defined when $x^2 - 9 > 0 \implies x^2 > 9$
	$\Rightarrow \sqrt{x^2} > \sqrt{9} \Rightarrow x > 3 \Rightarrow x > 3 \text{ or } x < -3.$
	$D_f = (-\infty, -3) \cup (3, \infty)$
33) Find the domain of the function	34) Find the domain of the function
$f(x) = \sqrt{9 + x^2}$	$f(x) = \sqrt[4]{x^2 - 25}$
Solution:	Solution:
$f(x)$ is defined when $9 + x^2 \ge 0$ but it is always true for	$f(x)$ is defined when $x^2 - 25 \ge 0 \implies x^2 \ge 25$
any value x . So, $D_f = \mathbb{R}$	$\Rightarrow \sqrt{x^2} \ge \sqrt{25} \Rightarrow x \ge 5 \Rightarrow x \ge 5 \text{ or } x \le -5.$
$D_f - \mathbb{R}$	So, $D_{1} = (-\infty -5] \cup [5, \infty)$
35) Find the domain of the function	$D_f = (-\infty, -5] \cup [5, \infty)$ 36) Find the range of the function
$f(x) = \sqrt[6]{16 - x^2}$	$f(x) = \sqrt{16 - x^2}$
Solution: $\int (x) = \sqrt{10} x$	Solution:
$\overline{f(x)}$ is defined when $16 - x^2 \ge 0 \implies -x^2 \ge -16 \implies$	We know that $f(x)$ is defined when $16 - x^2 \ge 0$
$x^2 \le 16 \implies \sqrt{x^2} \le \sqrt{16} \implies x \le 4 \implies -4 \le x \le 4$.	$\Rightarrow -x^2 \ge -16 \Rightarrow x^2 \le 16 \Rightarrow \sqrt{x^2} \le \sqrt{16}$
So,	\Rightarrow $ x \le 4 \Rightarrow -4 \le x \le 4$. So,
$D_f = [-4,4]$	$D_f = [-4,4]$
	Using D_f we find the outputs vary from 0 to 4. Hence,
27) Find the domain of the function	$R_f = [0,4]$ 38) Find the domain of the function
37) Find the domain of the function	•
x + x	(1
$f(x) = \frac{x + x }{x}$	$f(x) = \begin{cases} -\frac{1}{x}, & x < 0 \end{cases}$
Solution:	$f(x) = \begin{cases} -\frac{1}{x}, & x < 0\\ x, & x \ge 0 \end{cases}$
Solution: $f(x)$ is defined when $x \neq 0$. So,	Solution:
Solution: $f(x)$ is defined when $x \neq 0$. So, $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$	Solution: It is clear from the definition of the function $f(x)$ that $D_f = \mathbb{R} = (-\infty, \infty)$
Solution: $f(x)$ is defined when $x \neq 0$. So, $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ 39) Find the domain of the function	Solution: It is clear from the definition of the function $f(x)$ that $D_f = \mathbb{R} = (-\infty, \infty)$ 40) Find the domain of the function
Solution: $f(x)$ is defined when $x \neq 0$. So, $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ 39) Find the domain of the function	Solution: It is clear from the definition of the function $f(x)$ that $D_f = \mathbb{R} = (-\infty, \infty)$ 40) Find the domain of the function $f(x) = \sqrt{x - 1} + \sqrt{x + 3}$
Solution: $f(x)$ is defined when $x \neq 0$. So, $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ 39) Find the domain of the function $f(x) = \frac{2 - \sqrt{x}}{\sqrt{x^2 + 1}}$	Solution: It is clear from the definition of the function $f(x)$ that $D_f = \mathbb{R} = (-\infty, \infty)$ 40) Find the domain of the function $f(x) = \sqrt{x - 1} + \sqrt{x + 3}$ Solution:
Solution: $f(x) \text{ is defined when } x \neq 0. \text{ So,}$ $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ $39) \text{ Find the domain of the function}$ $f(x) = \frac{2 - \sqrt{x}}{\sqrt{x^2 + 1}}$ Solution:	Solution: It is clear from the definition of the function $f(x)$ that $D_f = \mathbb{R} = (-\infty, \infty)$ 40) Find the domain of the function $f(x) = \sqrt{x - 1} + \sqrt{x + 3}$ Solution: f(x) is defined when
Solution: $f(x)$ is defined when $x \neq 0$. So, $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ 39) Find the domain of the function $f(x) = \frac{2 - \sqrt{x}}{\sqrt{x^2 + 1}}$ Solution: f(x) is defined when	Solution: It is clear from the definition of the function $f(x)$ that $D_f = \mathbb{R} = (-\infty, \infty)$ 40) Find the domain of the function $f(x) = \sqrt{x - 1} + \sqrt{x + 3}$ Solution: f(x) is defined when $1 - x - 1 \ge 0 \implies x \ge 1 \implies D_{\sqrt{x-1}} = [1, \infty)$
Solution: $f(x)$ is defined when $x \neq 0$. So, $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ 39) Find the domain of the function $f(x) = \frac{2 - \sqrt{x}}{\sqrt{x^2 + 1}}$ Solution:	Solution: It is clear from the definition of the function $f(x)$ that $D_f = \mathbb{R} = (-\infty, \infty)$ 40) Find the domain of the function $f(x) = \sqrt{x - 1} + \sqrt{x + 3}$ Solution: f(x) is defined when
Solution: $f(x)$ is defined when $x \neq 0$. So, $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ 39) Find the domain of the function $f(x) = \frac{2 - \sqrt{x}}{\sqrt{x^2 + 1}}$ Solution: f(x) is defined when $1 - x \ge 0 \implies D_{\sqrt{x}} = [0, \infty)$	Solution: It is clear from the definition of the function $f(x)$ that $D_f = \mathbb{R} = (-\infty, \infty)$ 40) Find the domain of the function $f(x) = \sqrt{x - 1} + \sqrt{x + 3}$ Solution: f(x) is defined when $1 - x - 1 \ge 0 \implies x \ge 1 \implies D_{\sqrt{x-1}} = [1, \infty)$ $2 - x + 3 \ge 0 \implies x \ge -3 \implies D_{\sqrt{x+3}} = [-3, \infty)$
Solution: $f(x)$ is defined when $x \neq 0$. So, $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ 39) Find the domain of the function $f(x) = \frac{2 - \sqrt{x}}{\sqrt{x^2 + 1}}$ Solution: f(x) is defined when $1 - x \ge 0 \implies D_{\sqrt{x}} = [0, \infty)$ $2 - x^2 + 1 > 0$ but this is always true for all x $\implies D_{\sqrt{x^2 + 1}} = \mathbb{R}$. Hence,	Solution: It is clear from the definition of the function $f(x)$ that $D_f = \mathbb{R} = (-\infty, \infty)$ 40) Find the domain of the function $f(x) = \sqrt{x - 1} + \sqrt{x + 3}$ Solution: f(x) is defined when $1 - x - 1 \ge 0 \implies x \ge 1 \implies D_{\sqrt{x - 1}} = [1, \infty)$ $2 - x + 3 \ge 0 \implies x \ge -3 \implies D_{\sqrt{x + 3}} = [-3, \infty)$ Hence,
Solution: $f(x)$ is defined when $x \neq 0$. So, $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ 39) Find the domain of the function $f(x) = \frac{2 - \sqrt{x}}{\sqrt{x^2 + 1}}$ Solution: f(x) is defined when $1 - x \ge 0 \implies D_{\sqrt{x}} = [0, \infty)$ $2 - x^2 + 1 > 0$ but this is always true for all x $\implies D_{\sqrt{x^2 + 1}} = \mathbb{R}$. Hence,	Solution: It is clear from the definition of the function $f(x)$ that $D_f = \mathbb{R} = (-\infty, \infty)$ 40) Find the domain of the function $f(x) = \sqrt{x - 1} + \sqrt{x + 3}$ Solution: f(x) is defined when $1 - x - 1 \ge 0 \implies x \ge 1 \implies D_{\sqrt{x-1}} = [1, \infty)$ $2 - x + 3 \ge 0 \implies x \ge -3 \implies D_{\sqrt{x+3}} = [-3, \infty)$ Hence, $D_f = D_{\sqrt{x-1}} \cap D_{\sqrt{x+3}} = [1, \infty) \cap [-3, \infty) = [1, \infty)$
Solution: $f(x)$ is defined when $x \neq 0$. So, $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ 39) Find the domain of the function $f(x) = \frac{2 - \sqrt{x}}{\sqrt{x^2 + 1}}$ Solution: f(x) is defined when $1 - x \ge 0 \implies D_{\sqrt{x}} = [0, \infty)$ $2 - x^2 + 1 > 0$ but this is always true for all x $\implies D_{\sqrt{x^2 + 1}} = \mathbb{R}$.	Solution: It is clear from the definition of the function $f(x)$ that $D_f = \mathbb{R} = (-\infty, \infty)$ 40) Find the domain of the function $f(x) = \sqrt{x - 1} + \sqrt{x + 3}$ Solution: f(x) is defined when $1 - x - 1 \ge 0 \implies x \ge 1 \implies D_{\sqrt{x-1}} = [1, \infty)$ $2 - x + 3 \ge 0 \implies x \ge -3 \implies D_{\sqrt{x+3}} = [-3, \infty)$ Hence,
Solution: $f(x)$ is defined when $x \neq 0$. So, $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ 39) Find the domain of the function $f(x) = \frac{2 - \sqrt{x}}{\sqrt{x^2 + 1}}$ Solution: f(x) is defined when $1 - x \ge 0 \implies D_{\sqrt{x}} = [0, \infty)$ $2 - x^2 + 1 > 0$ but this is always true for all x $\implies D_{\sqrt{x^2 + 1}} = \mathbb{R}$. Hence, $D_f = D_{\sqrt{x}} \cap D_{\sqrt{x^2 + 1}} = [0, \infty) \cap \mathbb{R} = [0, \infty)$ 41) The function $f(x) = 3x^4 + x^2 + 1$ is a polynomial	Solution: It is clear from the definition of the function $f(x)$ that $D_f = \mathbb{R} = (-\infty, \infty)$ 40) Find the domain of the function $f(x) = \sqrt{x - 1} + \sqrt{x + 3}$ Solution: f(x) is defined when $1 - x - 1 \ge 0 \implies x \ge 1 \implies D_{\sqrt{x-1}} = [1, \infty)$ $2 - x + 3 \ge 0 \implies x \ge -3 \implies D_{\sqrt{x+3}} = [-3, \infty)$ Hence, $D_f = D_{\sqrt{x-1}} \cap D_{\sqrt{x+3}} = [1, \infty) \cap [-3, \infty) = [1, \infty)$
Solution: $f(x)$ is defined when $x \neq 0$. So, $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ 39) Find the domain of the function $f(x) = \frac{2 - \sqrt{x}}{\sqrt{x^2 + 1}}$ Solution: f(x) is defined when $1 - x \ge 0 \implies D_{\sqrt{x}} = [0, \infty)$ $2 - x^2 + 1 > 0$ but this is always true for all x $\implies D_{\sqrt{x^2 + 1}} = \mathbb{R}$. Hence, $D_f = D_{\sqrt{x}} \cap D_{\sqrt{x^2 + 1}} = [0, \infty) \cap \mathbb{R} = [0, \infty)$ 41) The function $f(x) = 3x^4 + x^2 + 1$ is a polynomial function. 43) The function $f(x) = -3x^2 + 7$ is a quadratic	Solution: It is clear from the definition of the function $f(x)$ that $D_f = \mathbb{R} = (-\infty, \infty)$ 40) Find the domain of the function $f(x) = \sqrt{x - 1} + \sqrt{x + 3}$ Solution: f(x) is defined when $1 - x - 1 \ge 0 \implies x \ge 1 \implies D_{\sqrt{x-1}} = [1, \infty)$ $2 - x + 3 \ge 0 \implies x \ge -3 \implies D_{\sqrt{x+3}} = [-3, \infty)$ Hence, $D_f = D_{\sqrt{x-1}} \cap D_{\sqrt{x+3}} = [1, \infty) \cap [-3, \infty) = [1, \infty)$ 42) The function $f(x) = 5x^3 + x^2 + 7$ is a cubic function. 44) The function $f(x) = 2x + 3$ is a linear function.
Solution: $f(x)$ is defined when $x \neq 0$. So, $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ 39) Find the domain of the function $f(x) = \frac{2 - \sqrt{x}}{\sqrt{x^2 + 1}}$ Solution: f(x) is defined when $1 - x \ge 0 \implies D_{\sqrt{x}} = [0, \infty)$ $2 - x^2 + 1 > 0$ but this is always true for all x $\implies D_{\sqrt{x^2+1}} = \mathbb{R}$. Hence, $D_f = D_{\sqrt{x}} \cap D_{\sqrt{x^2+1}} = [0, \infty) \cap \mathbb{R} = [0, \infty)$ 41) The function $f(x) = 3x^4 + x^2 + 1$ is a polynomial function. 43) The function $f(x) = -3x^2 + 7$ is a quadratic function. 45) The function $f(x) = x^7$ is a power function.	Solution: It is clear from the definition of the function $f(x)$ that $D_f = \mathbb{R} = (-\infty, \infty)$ 40) Find the domain of the function $f(x) = \sqrt{x - 1} + \sqrt{x + 3}$ Solution: f(x) is defined when $1 - x - 1 \ge 0 \implies x \ge 1 \implies D_{\sqrt{x-1}} = [1, \infty)$ $2 - x + 3 \ge 0 \implies x \ge -3 \implies D_{\sqrt{x+3}} = [-3, \infty)$ Hence, $D_f = D_{\sqrt{x-1}} \cap D_{\sqrt{x+3}} = [1, \infty) \cap [-3, \infty) = [1, \infty)$ 42) The function $f(x) = 5x^3 + x^2 + 7$ is a cubic function.
Solution: $f(x)$ is defined when $x \neq 0$. So, $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ 39) Find the domain of the function $f(x) = \frac{2 - \sqrt{x}}{\sqrt{x^2 + 1}}$ Solution: f(x) is defined when $1 - x \ge 0 \implies D_{\sqrt{x}} = [0, \infty)$ $2 - x^2 + 1 > 0$ but this is always true for all x $\implies D_{\sqrt{x^2 + 1}} = \mathbb{R}$. Hence, $D_f = D_{\sqrt{x}} \cap D_{\sqrt{x^2 + 1}} = [0, \infty) \cap \mathbb{R} = [0, \infty)$ 41) The function $f(x) = 3x^4 + x^2 + 1$ is a polynomial function. 43) The function $f(x) = -3x^2 + 7$ is a quadratic function.	Solution: It is clear from the definition of the function $f(x)$ that $D_f = \mathbb{R} = (-\infty, \infty)$ 40) Find the domain of the function $f(x) = \sqrt{x - 1} + \sqrt{x + 3}$ Solution: f(x) is defined when 1- $x - 1 \ge 0 \implies x \ge 1 \implies D_{\sqrt{x-1}} = [1, \infty)$ 2- $x + 3 \ge 0 \implies x \ge -3 \implies D_{\sqrt{x+3}} = [-3, \infty)$ Hence, $D_f = D_{\sqrt{x-1}} \cap D_{\sqrt{x+3}} = [1, \infty) \cap [-3, \infty) = [1, \infty)$ 42) The function $f(x) = 5x^3 + x^2 + 7$ is a cubic function. 44) The function $f(x) = 2x + 3$ is a linear function. 46) The function $f(x) = \frac{2x+3}{x^2-1}$ is a rational function.

49) The function $f(x) = e^x$ is a natural exponential	50) The function $f(x) = 3^x$ is a general exponential
function.	function.
51) The function $f(x) = x^2 + \sqrt{x-2}$ is an algebraic	52) The function $f(x) = -3$ is a constant function.
function.	
53) The function $f(x) = \log_3 x$ is a general logarithmic	54) The function $f(x) = \ln x$ is a natural logarithmic
function.	function.
55) The function $f(x) = 3x^4 + x^2 + 1$ is	56) The function $f(x) = 9 - x^2$ is
Solution: $f(-x) = 3(-x)^4 + (-x)^2 + 1 = 3x^4 + x^2 + 1 = f(x)$	Solution: $f(x) = 0$ $(x)^2 = 0$ $x^2 = f(x)$
$f(-x) = 3(-x)^{x} + (-x)^{x} + 1 = 3x^{x} + x^{x} + 1 = f(x)$ Hence,	$f(-x) = 9 - (-x)^2 = 9 - x^2 = f(x)$ Hence,
f(x) is an even function.	f(x) is an even function.
57) The function $f(x) = x^5 - x$ is	58) The function $f(x) = 2 - \sqrt[5]{x}$ is
Solution:	Solution:
$\overline{f(-x)} = (-x)^5 - (-x) = -x^5 + x$	$f(-x) = 2 - \sqrt[5]{(-x)} = 2 - \sqrt[5]{-x} = 2 + \sqrt[5]{x}$
$= -(x^5 - x) = -f(x)$	$= -(-2 - \sqrt[5]{x})$
Hence,	Hence,
f(x) is an odd function.	f(x) is neither even nor odd.
59) The function $f(x) = 3x + \frac{2}{\sqrt{x^2 + 9}}$ is	60) The function $f(x) = \frac{3}{\sqrt{x^2+9}}$ is
Solution: $\sqrt{x^2+9}$	Solution:
$f(-x) = 3(-x) + \frac{2}{\sqrt{(-x)^2 + 9}} = -3x + \frac{2}{\sqrt{x^2 + 9}}$	$f(-x) = \frac{3}{\sqrt{(-x)^2 + 9}} = \frac{3}{\sqrt{x^2 + 9}} = f(x)$
	Hence,
$=-\left(3x-\frac{2}{\sqrt{x^2+9}}\right)$	f(x) is an even function.
Hence,	
f(x) is neither even nor odd.	
61) The function $f(x) = \sqrt{4 + x^2}$ is	62) The function $f(x) = 3$ is
Solution:	Solution:
$f(-x) = \sqrt{4 + (-x)^2} = \sqrt{4 + x^2} = f(x)$	Since the graph of the constant function 3 is symmetric
Hence,	about the $y - axis$, then $f(x)$ is an even function.
f(x) is an even function.	
63) The function $f(x) = \frac{9-x^2}{x-2}$ is	64) The function $f(x) = \frac{x^2 - 4}{x^2 + 1}$ is
Solution:	Solution:
$f(-x) = \frac{9 - (-x)^2}{(-x) - 2} = \frac{9 - x^2}{-x - 2}$	$f(-x) = (-x)^2 - 4 - x^2 - 4 - f(x)$
	$f(-x) = \frac{(-x)^2 - 4}{(-x)^2 + 1} = \frac{x^2 - 4}{x^2 + 1} = f(x)$
$=-\left(\frac{9-x^2}{x+2}\right)$	Hence,
- (x+2)	f(x) is an even function.
Hence,	
f(x) is neither even nor odd.	
65) The function $f(x) = 3 x $ is	66) The function $f(x) = x^{-2}$ is
Solution: f(-x) = 3 (-x) = 3 x = f(x)	Solution: 1
f(-x) = S[(-x)] = S[x] = f(x) Hence,	$f(x) = x^{-2} = \frac{1}{x^2}$
f(x) is an even function.	~
	$f(-x) = \frac{1}{(-x)^2} = \frac{1}{x^2} = f(x)$
	Hence, $f(x)$ is an even function.

67) The function $f(x) = x^3 - 2x + 5$ is	68) The function $f(x) = \sqrt[3]{x^5} - x^3 + x$ is
Solution:	<u>Solution:</u>
$f(-x) = (-x)^3 - 2(-x) + 5 = -x^3 + 2x + 5$	$f(-x) = \sqrt[3]{(-x)^5} - (-x)^3 + (-x) = -\sqrt[3]{x^5} + x^3 - x$
$= -(x^3 - 2x - 5)$	$= -(\sqrt[3]{x^5} - x^3 + x) = -f(x)$
Hence,	Hence,
f(x) is neither even nor odd.	f(x) is an odd function.
69) The function $f(x) = 7$ is	70) The function $f(x) = \frac{x^3 - 4}{x^3 + 1}$ is
<u>Solution:</u>	<u>Solution:</u>
Since the graph of the constant function 7 is symmetric	$f(-x) = \frac{(-x)^3 - 4}{(-x)^3 + 1} = \frac{-x^3 - 4}{-x^3 + 1} = -\frac{x^3 + 4}{-x^3 + 1}$
about the $y - axis$, then	Hence,
f(x) is an even function.	f(x) is neither even nor odd.
71) The function $f(x) = \frac{x^2 - 1}{x^3 + 3}$ is	72) The function $f(x) = x^6 - 4x^2 + 1$ is
<u>Solution:</u>	<u>Solution:</u>
$f(-x) = \frac{(-x)^2 - 1}{(-x)^3 + 3} = \frac{x^2 - 1}{-x^3 + 3} = -\frac{x^2 - 1}{x^3 - 3}$	$f(-x) = (-x)^6 - 4(-x)^2 + 1 = x^6 - 4x^2 + 1 = f(x)$
Hence,	Hence,
f(x) is neither even nor odd.	f(x) is an even function.
73) The function $f(x) = x^2$ is increasing on $(0, \infty)$.	74) The function $f(x) = x^2$ is decreasing on $(-\infty, 0)$.
75) The function $f(x) = x^3$ is increasing on $(-\infty, \infty)$.	76) The function $f(x) = x^3$ is not decreasing at all.
77) The function $f(x) = \sqrt{x}$ is increasing on $(0, \infty)$.	78) The function $f(x) = \sqrt{x}$ is not decreasing at all.
79) The function $f(x) = \frac{1}{x}$ is not increasing at all.	80) The function $f(x) = \frac{1}{x}$ is decreasing on $(-\infty, \infty)$.